
Network Analysis in the Identification of Genes Conferring 
Metastatic Potential in Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) arises from malignant 
hepatocytes and has been estimated to have an inci-

dence of >1 million cases by 2025. HCC is the most common 
type of liver cancers accounting for approximately 90% of 
liver cancer cases.[1] According to the Ministry of Health of 
Malaysia, liver cancer is ranked sixth for the most common 
cause of cancer accounting for both genders, while it is 
ranked third for the cancer-related death in the year 2020.
[2] Others have also reported that the annual mortality rate 
per 100, 000 people is trended upwards, as the rate in the 
year 2013 was 6.1%, which is a drastic increase of 42.8% 
since 1990.[3]

Furthermore, HCC has been a subject of poor prognosis, ac-
counting for the second leading cause of global cancer-re-
lated mortality and 9.1% of total death in the year 2012, 
despite its relative lower occurrence when compared with 
other, more common cancers. Numerous treatment meth-
ods including liver transplantation, radiofrequency abla-
tion, and hepatic resection are available, but only modestly 
improves 5 years relative survival (of 3.1%). This is largely 
due to the limitations of the treatment methods, being 
limited to early stages of the disease. In the late stages of 
HCC, the cancer preferentially metastasizes to various sites 
including the portal vein, lungs, bones, brain, lymph nodes 
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and adrenal glands, and leading to the observed poor over-
all survival (OS).[4] Therefore, investigating the metastatic 
mechanisms and progression of HCC is crucial to improve 
the OS of HCC patients.

Gene expression studies with the use of microarray tech-
nologies can quantify the expression of up to tens of thou-
sands of genes simultaneously. From which, differentially 
expressed genes (DEGs) can be identified between groups 
of samples.[5] Although previous studies have performed 
said analysis to uncover the mechanisms of HCC metasta-
sis, these studies often focus on gene-centric approaches, 
or at most, on enriching the DEGs to corresponding path-
ways.[6-8] With the advent of graph theory in the context of 
protein-protein interaction (PPI) networks, the scale-free 
nature of these biological networks of which can be taken 
advantage, allowing for the investigation and ranking of 
genes and pathways. One such application, is the identifi-
cation of hub proteins. Hub proteins, that may play a gate-
way role and serve as therapeutic targets or biomarkers, 
along with the dynamic interactions between genes and 
pathways can be captured and be investigated at depth.[9]

In the present study, bioinformatics analyses were per-
formed to identify the DEGs associated with HCC metasta-
sis. This was performed, by analyzing previously submitted 
microarray data sets on Gene Expression Omnibus (GEO), 
whereby DEGs between metastatic HCC and non-metastat-
ic HCC. Enrichment analysis was also performed to identify 
the pathways associated with the DEGs. After which, this 
study would analyze the network characteristics of the 
PPI network, along with the investigation of the network 
of enriched pathways, with various network parameters to 
better understand the underlying mechanisms of HCC me-
tastasis and to identify potential hub genes for therapeutic 
efforts. Survival analysis would be performed on the iden-
tified hub genes to evaluate their significance to the OS of 
patients.

Methods
The flow chart of the methodology used in this study is 
shown graphically in Figure S1. 

Microarray Data Retrieval and Processing 
First, genes expression profiles must first be selected, to 
identify genes that are differentially expressed in metastat-
ic HCC. Microarray data set search was conducted on GEO 
using the keywords “HCC.” One gene expression profiling 
by array dataset was selected (accession no., GSE45114), of 
which, follows the following criteria: sample groups con-
tain intratumoral or peritumoral HCC samples and that 
HCCs could be further classified into metastasis-present 

or metastasis-absent. GSE45114 deposited by Wei et al.[8] 
provided 49 sets of samples, of which contained 24 sets 
of homogenous primary HCC (C) and 25 sets of perican-
cer liver tissues (P), in which, could be further categorized 
by the history of distant metastasis, of which, 27 sets had 
history of metastasis (M) while the remaining 22 sets did 
not (N). This resulted in a ratio of samples, CM:PM:CN:PN 
of 13:11:14:11. Besides, the dataset GSE76427 deposited by 
Grinchuk et al.[10] offered 167 sets of samples, 115 of which 
derived from primary HCC tumors, with the remaining 52 
derived from the surrounding liver tissue of HCC tumors 
was used. This dataset has not recorded any information 
regarding metastasis, rather, it would be used for Kaplan 
Meier survival analysis, as it offered a longer follow-up peri-
od on overall patient survival.[10] The elaborate information 
regarding the datasets is provided in Table S1.

Differentially Expressed Genes (DEG) Analysis
Subsequently, data preparation and cleaning, gene anno-
tation, and unsupervised clustering were conducted in R 
using the appropriate packages, namely, GEOquery,[11] Ti-

Figure S1. Flow chart depicting the overall design of the study at 
present. MDS, multidimensional scaling; DEG, differentially ex-
pressed genes; GO, go ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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dyverse,[12] AnnotationDBI[13] with Ensembl gene database, 
and Limma,[14] before identification of DEGs. Unsupervised 
clustering, using multidimensional scaling (MDS) method, 
allows for the verification of correct group labeling for each 
sample (e.g., normal liver tissues should cluster together 
and not cluster separately), while also allowing a prelimi-
nary inspection, on the extent of DEGs one would be able 
to find.[15] To identify DEGs, the multiple linear model fitting 
and contrast fitting functions within the R package, Limma, 
was then used to apply linear model fitting for genes be-
tween groups of samples. The results were further adjusted 
for false discovery and filtering, by applying Benjamini and 
Hochberg’s method of false discovery rate control, and by 
setting the criteria: p<=0.05 and absolute log fold change 
(|logFC|) >=1. Results are then visualized with the Volcano 
plot. Ultimately, the DEGs that were differentially expressed 
in metastatic HCC were subjected to enrichment analysis 
and PPI network construction.

Functional Enrichment Analysis
Following which, the biological functions and pathways as-
sociated with the DEGs in metastatic HCC were identified 
using functional enrichment analysis. This process encom-
passes the identification of relevant pathways or biological 
functions by associating the occurrence, or “hits,” of genes 
in a gene set to pathways or biological functions curated 
in well-established, public pathway databases. In the pres-
ent study, functional enrichment was performed using the 
DEGs along with their corresponding logFC values, using the 
msigdbr[16] and fgsea[17] packages in RAll three Gene Ontolo-
gy (GO) categories, biological processes, cellular component 
(CC) and molecular function (MF) were selected and down-
loaded using the msigdbr package, and then enrichment 
was run using fgseasimple function fgsea had to offer. The 
analysis was repeated using Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways and Reactome. 

PPI Construction and Validation
Following the identification of genes was differentially 
expressed in metastatic HCC samples, they were used to 
construct a PPI network, to investigate the interactions be-
tween the DEGs. Cytoscape was the desktop application of 

choice to visualize the PPI networks,[18] while the STRING 
app, that is an extension available in cytoscape, was the 
application of choice to import the network of DEGs.[19] The 
STRING app is able to predict interactions between proteins 
on the basis of omics data, including homology, genome 
features, co-expression and text mining, on top of experi-
mental data, which allows for the discovery of novel func-
tions for the proteins.[20] The cumulative score of all these 
data that predict interactions between genes, is quantified 
as STRING confidence scores, or full STRING interaction, and 
ranges between 0.0 and 1.0, with 0.0 indicating very low 
possibility of interaction and 1.0 indicating very high pos-
sibility of interaction. Interaction between the nodes was 
full STRING interactions set at the confidence score of 0.7. 
Network centrality values for the nodes in the PPI network 
were then calculated using the Network Analyzer app.[21]

Hub Genes Identification
Hub genes which have high centrality parameters and play 
important roles in regulating the information flow of the 
network were then identified. From the HCC metastasis PPI 
network, the top 10% of genes that scored high values in 
the centrality parameter, degree, were selected, and were 
identified as the hub genes. However, the betweenness 
centrality of the potential hub genes would also be investi-
gated, to ascertain the importance of the gene in the con-
text of information flow throughout the network.[21]

OS
To validate the importance of the hub genes in driving HCC 
metastasis, survival analysis was performed on the hub 
genes. Namely, the dataset GSE76427 is used to perform Ka-
plan Meier survival analysis. The median expression of hub 
genes was used as the cutoffs defining the low and high ex-
pression groups of the hub genes across the HCC samples 
in the GSE76427. Univariate Cox proportional hazard regres-
sion was performed in R using the survival[22] and survmin-
er,[23] whereby the log rank p value and hazard ratios were 
calculated and compared. To mitigate biases and to inves-
tigate HCC subtype-specific survival analysis, GEPIA2-pow-
ered survival analysis was performed on the hub genes that 
correlated with patient survival in GSE76427. The survival 

Table S1. Details of datasets used in present study.

Datasets Sample Array Platform HCC samples Peritumor samples Detail

GSE45114 HCC mRNA GPL5918 14 +13(M)a 11 +11(M)a CapitalBio Human 22k 
       oligonucleotide microarray
GSE76427 HCC mRNA GPL10558 115 52 Illumina HumanHT-12 V4.0  
       expression beadchip

aM denotes samples with patient history of distant metastasis. bH denotes endothelial tissues from Hemangioma of patients without HCC.
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analyses using GEPIA2 online service offered a total of 4 
available HCC expression datasets: The general dataset for 
HCC samples (164 samples), the dataset for iCluster 1 sub-
type of HCC samples (60 samples), the dataset for iCluster 
2 subtype of HCC samples (54 samples) and the dataset for 
iCluster 3 subtype of HCC samples (62 samples).[24]

Pathway Networks Visualization 
Next, to investigate the interactions or crosstalk between 
pathways, a network of pathways was then constructed 
and analyzed. This network comprised nodes depicting 
pathways and edges depicting the interactions between 
the pathways. This network is coined as the enrichment 
map. To construct an enrichment map, STRING functional 
enrichment of all nodes was first performed to identify the 
pathways associated with the PPI network. Then, an enrich-
ment map was then created using the enrichment results 
through EnrichmentMap app.[25] Only the significant path-
ways generated from the prior enrichment analysis from 
fgsea were selected, with their NES values added into the 
nodes table. The AutoAnnotate app was then used to clus-
ter and summarize the pathway networks with semantic 
annotations.[26]

Results

DEGs Identified in Metastatic HCC 
The results for MDS clustering are shown in Figure S2. 
The plot generated was in agreement with the expected, 
whereby tumor and non-tumor samples were well differen-
tiated against one another, while metastatic and non-meta-
static samples were less well-differentiated with one. When 
subjecting the microarray data set to the Limma microarray 
analysis pipeline, a total number of 157 DEGs were identi-
fied, 130 of which were downregulated while the remain-
ing 27 were upregulated. The results of the analysis can be 
visualized in the volcano plot Figure 1a.

Functional Enrichment Analysis on DEGs 
The identified DEGs were then subjected to functional 
enrichment analysis with the three GO pathways, KEGG 
and Reactome. The results were filtered with p<=0.05, 
resulting in total of 339 pathways, 252 of which from 
GO:BP, 17 of which from GO:CC, 33 of which from GO:MF, 
9 of which from KEGG, and 28 of which from Reactome. 
The top 6 pathways from each database are visualized in 
Figure 1b.

PPI Construction Using STRING 
Significantly expressed genes were queried on cytos-
cape using the STRING protein query (confidence score of 
>=0.7). To ensure the relevancy of the network with HCC 
metastasis, nodes that were isolated from the network 
which forms small clusters with 2 or less nodes were dis-
carded from the main network. The network, was then ad-
justed to have node sizes to correspond to degree (increase 
of node size indicating increase of degree) the color of the 
nodes to correspond to the calculated logFC values (with 
blue indicating negative logFC, white indicating 0 logFC, 
and red indicating positive logFC). This resulted in a net-
work with 99 nodes that are shown in Figure 2.

Figure S2. Unsupervised clustering of samples using Multidimen-
sional Scaling.

Figure 1. (a) Volcano plotting. Volcano plots were generated man-
ually using the ggplot2 package. Significant DEGs were annotated 
using the DecideTests function, with “global” setting. (b) Functional 
enrichment. GO Biological processes, GO cellular components and 
GO molecular functions, KEGG and Reactome functional were per-
formed on the DEGs. The results were filtered with p value <= 0.05.
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Hub Genes Identification 
Hub genes selection was then carried out by selecting 
nodes with centrality values that were consistently high 
across the centrality parameters. The centrality parameter 
considered for hub gene determination was the degree pa-
rameter. A total of 10 hub genes were selected based on 
the above criteria and are visualized in Table 1. Of the 10 
hub genes identified with the degree centrality parameter, 
their closeness centrality and between ness centrality were 
also investigated. The 10 hub genes were then subjected to 
survival analysis using microarray expression data provid-
ed by the GSE76427.

Overall Survival Analysis on Hub Genes
Univariate Cox proportional hazard regression performed on 
the 10 hub genes revealed that four of the 10 hub genes to 
significantly correlate with patients’ OS. Namely, SERPINC1, 
CD44, FGG, and APOA5 have log rank p value of below the 
0.05 threshold. The results are visualized in Table S2. The four 
hub genes were then subjected to a more thorough survival 
analysis using GEPIA2 services. Using the Univariate Cox pro-
portional hazard regression analysis once more, the hazard 
ratio was estimated, the results of which are shown in Figure 
3a-d. SERPINC1, FGG, and APOA5 demonstrated hazard ra-
tios of below 1.000, indicating that patients that have higher 
than median expression levels of the genes, were more likely 
to succumb to death. On the other hand, patients with high-
er than median levels of CD44 are 1.589 times as likely to die 
than those who have lower than median levels of expres-
sion of CD44. In a nutshell, patients with higher expressions 
of SERPINC1, FGG, and APOA5 or patients who have lower 
expressions of CD44 are more likely to survive. Further in-
formation on these 4 hub genes, retrieved from the STRING 
database and the information regarding the DEG analysis is 
displayed in Table 2.

Figure 2. STRING (0.7) Network. The figure shows the network com-
prising of nodes of genes that were found to be differentially ex-
pressed in tumor samples with varying metastatic potential. Small 
clusters of nodes that were disconnected from the biggest cluster, 
with two or less number of nodes were removed.

Table 1. Hub genes selection. Hub genes are selected by selecting nodes with consistently high centrality values across degree and 
betweenness centrality

 ENSEMBL SYMBOL Degree Closeness Betweenness

1 ENSG00000118137 APOA1 18 0.328 0.109
2 ENSG00000145192 AHSG 17 0.343 0.093
3 ENSG00000117601 SERPINC1 16 0.384 0.468
4 ENSG00000171557 FGG 14 0.321 0.054
5 ENSG00000110244 APOA4 14 0.339 0.049
6 ENSG00000110245 APOC3 13 0.335 0.162
7 ENSG00000171759 PAH 9 0.269 0.264
8 ENSG00000110243 APOA5 9 0.326 0.004
9 ENSG00000026508 CD44 8 0.336 0.450
10 ENSG00000108821 COL1A1 8 0.265 0.151

Table S2. Univariate Cox proportional hazard regression. Hub genes 
were subjected to Univariate Cox proportional hazard regression, 
in which the log-rank p values were calculated. The entries that are 
bolded in the table are hub genes with their log-rank p-values that 
do exceed the 0.05 threshold

Genes Log-rank p Genes Log-rank p

1 APOA1 0.882 6 APOC3 0.727
2 AHSG 0.728 7 PAH 0.262
3 SERPINC1 0.017 8 APOA5 0.005
4 FGG 0.006 9 CD44 0.034
5 APOA4 0.294 10 COL1A1 0.466
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The hub genes are also subjected to survival analysis us-
ing the available GEPIA2 database and online services. 
The entire results are shown in Figure S3, while the results 
with significant log rank p values are shown in Figure 3e-h. 

SERPINC1 survival analysis using the general HCC dataset, 
FGG survival analyses using the general HCC and iCluster 
2 datasets, and CD44 survival analysis using the iCluster 3 
dataset demonstrated significance. The hazard ratios of the 
four analyses were relatively consistent with the ones gen-
erated in the present study, whereby SERPINC1 and FGG 
had hazard ratios of below 1.000, while CD44 had a hazard 
ratio of above 1.000. APOA5 expression levels, however, 
did not demonstrate correlation with patient survival using 
any of the GEPIA 2 datasets.

Pathway Networks Visualization
The constructed PPI network was then subjected to STRING 
functional enrichment and enrichment map generation, in 
which the results generated prior with fgsea were import-
ed into cytoscape to outfit the pathway nodes with NES 
values and to filter pathways. This resulted in a network 
of 59 pathways. Following the use of Autoannotate app to 
cluster the pathways, numerous large clusters can be seen. 
The results are visualized in Figure 4. The biggest cluster, 
“Fibrillar Collagen Trimers” contains 19 upregulated path-
ways and is associated with the hub genes, FGG and CD44. 
This is followed up by the second biggest cluster, “Small 
Process Catabolic,” which contains 10 downregulated path-
ways and is directly associated with APOA5 and CD44 hub 
genes. There were also two small clusters, each with two 
upregulated pathways, “Response wounding wound” and 
“cell migration locomotion,” that are associated with all hub 
genes except for APOA5 and were linked to the “Fibrillar 
Collagen Trimers” cluster. 

Discussion
HCC is a relatively common cancer with a high mortality 
rate due to the limitations of contemporary treatment to 
only be effective in early stages of the disease.[4] In the late 
stages of HCC, the tumor or tumors progress, accumulat-
ing dysregulation of genes and pathways that ultimately 
confers the disease the ability to metastasize. Therefore, 

Table 2. Potential therapeutic targets. Hub genes that correlated with patient overall survival are displayed here, along with the information 
retrieved from the STRING database and the DEG analysis

STRING ID SYMBOL ENSEMBL ID Gene name logFC p

9606. SERPINC1 ENSG00000117601 serpin family C member 1 -1.699 0.000
ENSP00000356671
9606. CD44 ENSG00000026508 CD44 molecule (Indian blood group) 1.014 0.048
ENSP00000398632
9606. FGG ENSG00000171557 fibrinogen gamma chain -1.064 0.016
ENSP00000336829
9606. APOA5 ENSG00000110243 apolipoprotein A5 -1.396 0.013
ENSP00000445002

Figure 3. De novo Survival Analysis. The expression levels of SER-
PINC1 (a), FGG (b), CD44 (c) and APOA5 (d) were extracted from 
GSE76427 and was stratified into two groups: higher than median ex-
pression group in blue, and lower than median expression group in 
red. Survival Analysis with GEPIA 2. (e) Survival analysis of SERPINC1 
with the general dataset. (f) Survival analysis of CD44 with the iClus-
ter3 dataset. (g) Survival analysis of FGG with the general dataset. (h) 
Survival analysis of FGG with the iCluster2 dataset.
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this study aims to capture the genes and pathways that are 
dysregulated in the advanced stage of the disease, the very 
same genes and pathways that drive metastasis in HCC. 
By the identification of the relevant genes and pathways 
which are important in the context of network centralness, 
the mechanism behind HCC metastasis could be better 
understood, while potentially novel biomarkers and thera-
peutic targets may be derived. These potential biomarkers 
or therapeutic targets present themselves as hub genes, 
which were identified as SERPINC1, CD44, FGG, and APOA5.

The full name of SERPINC1 is serpin family C member 1. It 
is also known as AT3, AT3D, THPH7, ATIII, ATIII-R2, ATIII-T1, 
or ATIII-T2. SERPINC1 encodes the protein, antithrombin III, 
which functions to inhibit thrombin in the coagulation sys-
tem.[27] SERPINC1 has also been reported to suppress the 
invasion and metastasis of several cancers. Some studies 
have highlighted the role of SERPINC1 preventing hepatic 
ischemia/reperfusion-induced metastasis, namely, through 
interaction with thrombin, macrophage inhibitory factor 
(MIF) and the tumor necrosis factor alpha (TNF-α) produc-

Figure S3. GEPIA 2 survival analysis on hub genes.
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tion pathways.[28]

Thrombin has been demonstrated to be associated with 
more malignant phenotype in vivo through cancer.[28] First, 
protease activated receptor 1 which functions as a throm-
bin receptor, has been shown to be expressed in HCC cell 
lines. The activation the receptor through binding with 
thrombin, leads to tumor growth and angiogenesis.[29] Fur-
thermore, thrombin cleaves osteopontin. The osteopontin 
fragments in turn, have demonstrated to increase likeli-
hood of vascular invasion, most likely through means of 
osteopontin-CD44 interactions.[30,31] Finally, thrombin has 
demonstrated to increase the expression and secretion of 
MIF. SERPINC1, however, is able to cleave, and consequently 
inactivate thrombin, leading to diminished metastasis-pro-
moting activity of thrombin.[27] These may explain the role 
of SERPINC1 in conferring protective effects against HCC 
metastasis.

MIF behaves as a regulatory element for the innate im-
mune system, and increased expression of which normal-
ly results in increased systemic or local inflammation.[32] In 
the context of cancer metastasis, MIF exerts its metastatic 
effects through its tautomerase activity.[33] MIF’s metasta-
sis-promoting activities are thwarted by binding with SER-
PINC1, as ATIII–MIF complexes, the result of SERPINC1-MIF 
interaction, exert less biological effects due to the blocking 
of the reactive, and N-terminal proline residue in MIF that is 
required for tautomerase activity.[34]

In the context of colon cancer cells in a rat models, TNF-α 

is a pro-inflammatory cytokine and has been demonstrat-
ed to increase the expression levels of leukocyte adhesion 
molecules, which are able to enhance the lodgment of HCC 
cells on sinusoidal surfaces, hence, promoting the forma-
tion of metastatic modules. This occurs in a not-well stud-
ied mechanism, which does not involve thrombin.[35]

However, these mechanisms did not appear significant in 
this study, as all three mediators, TNF-α, MIF, and thrombin 
were not differentially expressed when comparing HCC 
tissues with varying metastatic potential, as demonstrat-
ed in the PPI network in Figure 5a. Further investigation 
also revealed that although thrombin did not qualify as a 
hub gene through Benjamini-Hochberg procedure, it did 
have a p value of 0.006 and a logFC of −1.515, indicating 
likelihood that it was downregulated in metastatic HCC in-
stead. Likewise, pathways involved in TNF-α production or 
MIF-mediated functions were not enriched in the present 
study. This could be partially explained by the nature of the 
study design employed in the GSE45114 dataset, which 
is strictly mRNA-focused and does not take into consid-
eration of protein activity. As thrombin and MIF were not 
differentially expressed in HCC samples with varying met-
astatic potential, it could be inferred that there would be 

Figure 4. Pathway Network Visualization. STRING functional enrich-
ment was performed to generate an enrichment map. The enrichment 
results table, which compiled all 3 categories of GO terms, along with 
KEGG and Reactome pathways, were filtered by p value <= 0.05 and 
were then imported into the nodes table. The diamond nodes are the 
identified hub genes. The translucent yellow bubbles are the results of 
auto annotate clustering using MCL algorithm. The grey edges depict 
interactions between pathways, via gene set overlap, while the green 
edges depict the involvement of hub genes in the pathways.

Figure 5. The PPI networks was sub-networked by selecting only 
hub genes and its immediate neighbors. Survival analysis-derived 
log rank p value was also merged with the network, shown by the 
colored borders. (a) SERPINC1. (b) CD44. (c) FGG. (d) APOA5.
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similar levels of the two proteins in both HCC types. How-
ever, due to the varying levels of SERPINC1, the extent of 
which thrombin and MIF are active in either HCC types may 
vary. Hence, it may be inferred that in HCC samples with 
lower metastatic potential, SERPINC1 is expressed at high-
er levels, causing the binding and subsequent inactivation 
of both thrombin and MIF, leading to the observed lower 
metastatic potential. TNF-α related pathways on the other 
hand, can be more confidently inferred as less relevant due 
to the absence of TNF-α differential expression.

As mentioned by prior studies, wound healing processes 
are inextricably linked with tumor progression and metas-
tasis.[36] In particularly, the pathways associated with wound 
healing are co-opted or corrupted in cancers, causing ab-
errations in the three wound healing processes: Inflamma-
tion, regeneration and remodeling, and leading to metas-
tasis.[37] In the present study, expression levels of SERPINC1 
appears to correlate with the wound healing and wound 
healing response processes, as shown in Figure 4 and Ta-
ble S3. The three processes of wound healing were also 
apparent, in the involvement of inflammatory processes, 
as demonstrated by the dysregulation of HRG, KNG1, and 
CXCR1, in the involvement of regeneration processes, as 
demonstrated by the dysregulation of SPARC, SCARB1 and 
PTK7, and even in remodeling processes, as demonstrate 
by the dysregulation of TIMP1 and MMP12.[37-45] At the same 
time, all nine of these aforementioned genes have been 
demonstrated to be involved in cancer metastasis.

Furthermore, the importance of wound healing pathways 
in driving metastasis in HCC, can be further demonstrat-

ed in the results of functional enrichment of all DEGs, as 
demonstrated in the enrichment map, whereby the largest 
cluster of pathways is “fibrillar collagen trimmers,” also in 
GO biological processes such as skin development, tissue 
morphogenesis, morphogenesis of an epithelium process-
es et cetera, in GO molecular functions such as extracellu-
lar matrix (ECM) structural activity, growth factor activity 
et cetera, in KEGG pathways such as ECM interaction, WNT 
signal pathway and JAK STAT signaling pathway, and in 
reactome pathways such as degradation of ECM, collagen 
degradation, and developmental biology.

Finally, the present study also identified other potential 
mediators and pathways that may play a crucial role in HCC 
metastasis. In particularly, SERPINC1 has also been predict-
ed using STRING algorithm to interact with kininogen 1 
(KNG1), phenylalanine hydroxylase (PAH), adrenomedullin 
binding protein (AMBP), and transthyretin (TTR). KNG1 has 
been demonstrated in inhibiting proliferation and induc-
ing apoptosis in glioma cells, potentially via P13/AKT sig-
naling pathway.[45] PAH, a less-well studied biomarker for 
HCC, has been reported as a prognostic marker for poor 
outcome, albeit with undiscovered means of involvement.
[46] AMBP, on the other hand, which binds to adrenomedul-
lin, an angiogenic peptide that functions under putative 
hypoxic conditions, reduces the availability, hence bioac-
tivity of adrenomedullin, and reducing the risks of metasta-
sis.[47] And finally, TTR which functions in oxidative inducing 
and detecting pathways, has also been demonstrated to 
be inversely correlated with metastatic potential in HCC, 
although with less-well studied mechanisms.[48,49] These 

Table S3. Pathways involving SERPINC1 are extracted from the node table from the enrichment map network. Corresponding NES are also 
depicted. Other genes that are present in the PPI network and are involved in the particular pathways are also depicted, whereby the hub 
genes are also bolded.

Pathways NES Genes

1 Identical protein binding -1.753 NCAM1|IAPP|COL1A1|SHMT1|APOA1|FGG|
  APOA4|TTR|TAT|SDS|SERPINC1|CTH|SCARB1|GNMT|APOC2|ALDOB|GLDC|AMBP|LDHB|
  CD28|FBP1|QDPR|HGD
2 Intrinsic Pathway of -1.619 F9|KNG1|SERPINC1 
Fibrin Clot Formation
3 Negative regulation of -1.849 COL6A3|TIMP1|APOC3|HRG|SERPINA7|APOA1|SERPINC1|SERPINA10|KNG1|FETUB|AMBP| 
hydrolase activity  AHSG|CD44
4 Wound healing 1.743 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|FGG|
  F13B|SERPINC1|MMP12|SCARB1|SERPINA10|
  KNG1|PTK7|COL5A1|CD44
5 Response to wounding 1.588 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|
  APOA1|FGG|F13B|SERPINC1|MMP12|SCARB1|SERPINA10|KNG1|PTK7|COL5A1|CD44|CX3CR1
6 Regulation of hydrolase -1.753 COL6A3|CCL16|ALDH1A1|TIMP1|APOC3| 
activity  CCL11|HRG|SERPINA7|APOA1|APOA4|
  SERPINC1|SERPINA10|APOC2|EDNRA|ALDOB|
  KNG1|FETUB|AMBP|AHSG|CD44|APOA5
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mediators and pathways may present as potential HCC me-
tastasis mechanisms, which are thwarted by the effects of 
SERPINC1.

Due to the high closeness and between ness centrality pa-
rameters of SERPINC1, it is highly possible that SERPINC1 
assumes high importance at the regional and global lev-
els in the HCC metastasis PPI network.[50] In other words, 
SERPINC1 may serve as a gateway gene that mediates the 
interactions between pathways, both at the regional level, 
for example, in the mediation among wound healing path-
ways, as well as at the global level, for example, in the me-
diation of interactions between wound healing pathways 
and pathways at the periphery of the network. Likewise, 
wound healing may be the central pathway that mediates 
and interacts with the pathways in the periphery, such as 
AMBP-mediated angiogenic pathways or TTR-mediated 
oxidative pathways. Therefore, SERPINC1 downregulation 
may be indispensably linked with the occurrence’s metas-
tasis, especially in a non-HCC-subtype related manner, as 
indicated in the OS analysis.

CD44 is a transmembrane glycoprotein with no kinase ac-
tivity. CD44 is expressed in a wide range of tissues, with ex-
pression in the skin ranking the highest. On binding with 
its ligand hyaluronan, cascades of signaling pathways in-
volved in cell survival, cytoskeletal changes and cell motil-
ity, as well as cell proliferation are all induced. It can also 
interact with collagens, osteopontin, and matrix metallo-
proteinases.[51,52] Furthermore, it is overexpressed in cancer 
stem cells and has shown implication in cancer progres-
sion, in particularly its isoform, CD44s, may have a role in 
regulating epithelial to mesenchymal transition (EMT).[51] It 
has been demonstrated that CD44 promotes proliferation 
and migration of HCC cells through YAP, CASP1, and ZEB1.

YAP is an important downstream regulator of the Hippo 
pathway, which is a pathway that plays a key role in driving 
metastasis in a variety of cancers.[53,54] The Hippo pathway 
enhances the translocation of transcription activators from 
the cytoplasm into the nucleus, subsequently activating a 
number of oncogenic genes.[53] Shin et al.[54] has demon-
strated that CD44 upregulates YAP, and further demonstrat-
ed that following the knockout of CD44, the migration and 
proliferation ability of HCC cell lines were restored through 
overexpression of YAP.

CASP1 is activated in macrophages following inflamma-
tion-promoting stimuli, such as hypoxic stimuli, and is in-
volved in the activation of various inflammatory cytokines, 
namely, IL1B.[55] Following CASP1 activation, the secret-
ed IL1B promotes HCC progression and EMT.[56] Li et al.[57] 
demonstrated that CD44 promotes CASP1/IL1B pathway 
through inhibiting autophagic degradation of CASP1.

ZEB1 belongs to a group of transcription factors that re-
presses epithelial gene expression. The activation of these 
transcription factors leads to EMT.[56] CD44, has been 
demonstrated by Li et al.[57] to be engaged in a cyclic feed-
back loop, causing the upregulation of both genes in HCC. 
CD44, in particular the CD44s isoform was shown to be able 
to activate ZEB1 expression, which in turn downregulates 
ESRP1, further promoting the synthesis of, CD44s. These cy-
clical mechanisms allow HCC cells to maintain stemness of 
tumor, independent of external stimuli.[57]

This study, however, did not find these three major mech-
anisms to be significant. This is because the two of the me-
diators, YAP and CASP1 and did not appear to be signifi-
cantly differentially expressed as shown in Figure 5b, while 
ZEB1 was not detectable, due to the lack of correspond-
ing probes to capture its mRNA in the microarray dataset 
GSE45114. Likewise, ESRP1 was not detectable due to the 
lack of ESRP1 mRNA capturing probes, leading to inability 
to confirm or deny the involvement of CD44-ZEB1 interac-
tions in driving metastasis. As such, the mechanism behind 
metastasis driven by CD44 may be mediated through other 
less-well studied pathways and genes.

In the present study, numerous other pathways are en-
riched along with the differential expression of CD44 as 
shown in Table S4. These included pathways concerning 
ECM organization, ECM degradation, ECM disassembly, lo-
comotion, cell migration, biological adhesion, and integrin 
cell surface interactions. With the exception of FGG, none 
of the other 2 hub genes are involved in these pathways.

ECM remodeling is required in the surrounding non-tumor 
tissues to elicit further tumor growth, increased migration, 
and ultimately distant metastasis.[58] In the present study, 
ECM remodeling could be activated from CD44, through 
mediators such as MMP7, which is able to degrade the bas-
al membrane and to cleave E-cadherin ectodomain lead-
ing to inhibition of cell aggregation and induction of cell 
invasion,[59] and TIMP-1, which has been demonstrated to 
trigger formation of pre-metastatic niche in distant sites.
[60] MMP7-mediated mechanism appeared to have high in-
volvement in the present study, due to its significant log 
rank p value as shown in Figure 5b. Furthermore, glyco-
proteins on tumor cells, including CD44, are often upreg-
ulated, resulting in a bulkier and thicker glycocalyx layer.
[58] These would also result in increased tension applied 
from the glycocalyx layer onto the ECM-bound integrins, 
independent of myosin involvement, resulting in integrin 
priming and activation of integrin signaling which would 
result in pro-tumorigenic signals, such as growth and sur-
vival signals.[61]

CD44 also appeared to interact with COL1A1 as well, as 
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shown in Figure 5b. COL1A1 has been associated with nu-
merous cancers including HCC.[62] COL1A1 expression lev-
el had been shown to be directly correlated with CCND1 
and BCL2, which have both been established to be impli-
cated in EMT and cell survival, respectively.[63] In the pres-
ent study, it is noteworthy that although CCND1 and BCL2 
were not included in the PPI network, they were identified 
as DEGs, having p values of lower than 0.05 and log-fold 
change of above +1.000, indicating potential involvement. 
Besides, COL1A1 has been shown to promote Wnt signal-
ing, a signaling pathway that was enriched in the present 

study, had been demonstrated in other studies to increase 
cell migration in colorectal carcinoma.[63,64]

Furthermore, CD44 appeared to interact with ALDH1A1. AL-
DH1A1 has been demonstrated to be implicated in modifi-
cation of metabolism and maintenance of cancer stem cell 
properties, as well as DNA repair in the context of cancer in-
volvement.[65] Seubert et al.[62] demonstrated that ALDH1A1 
is able to increase CD44 expression through AURKA. This 
could partially explain as to why concurrent expression of 
CD44 and ALDH1A1 increases the aggressiveness of tumors, 
and increased likelihood for metastasis occurrence.

Table S4. Pathways involving CD44 are extracted from the node table from the enrichmentmap network. Corresponding NES are also 
depicted. Other genes that are present in the PPI network and are involved in the particular pathways are also depicted, whereby the hub 
genes are also bolded. 

Pathways NES Genes

1 Locomotion 1.949 LBP|CCR9|CCL16|NCAM1|COL1A1|CCL11|HRG|
  APOA1|SPN|MMP12|SCARB1|PTK7|COL5A1|CD44|SAA4|CX3CR1
2 Extracellular matrix organization 2.72 COL6A3|TIMP1|COL3A1|NCAM1|SPARC|COL1A1|MMP7|FMOD|FGG|TTR|MMP12|COL5A1|CD44
3 Biological adhesion 1.675 COL6A3|COL3A1|NCAM1|CCL11|FGG|APOA4|
  SPN|ACE2|SCARB1|POSTN|PTK7|AMBP|COL5A1|
  CD44|CX3CR1
4 Integrin cell surface interactions 1.734 COL6A3|COL3A1|COL1A1|COL5A1|FGG|CD44
5 Extracellular matrix disassembly 1.653 MMP12|TIMP1|MMP7|CD44
6 Negative regulation of hydrolase -1.849 COL6A3|TIMP1|APOC3|HRG|SERPINA7|APOA1| 
activity  SERPINC1|SERPINA10|KNG1|FETUB|AMBP|AHSG|CD44
7 Wound healing 1.743 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|FGG|
  F13B|SERPINC1|MMP12|SCARB1|SERPINA10|
  KNG1|PTK7|COL5A1|CD44
8 Organonitrogen compound -2.072 HPD|PAH|ALDH6A1|CYP3A5|GLS2|PIPOX|SHMT1|FMOD|TAT|CDO1|SDS|CTH|MMP12|SARDH| 
catabolic process  GLDC|AMBP|CD44|BHMT|QDPR|HGD
9 Response to wounding 1.588 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|APOA1|
  FGG|F13B|SERPINC1|MMP12|SCARB1|
  SERPINA10|KNG1|PTK7|COL5A1|CD44|CX3CR1
10 Cell migration 1.943 LBP|CCR9|CCL16|COL1A1|CCL11|APOA1|SPN|
  MMP12|SCARB1|PTK7|COL5A1|CD44|SAA4|
  CX3CR1
11 Degradation of the 2.326 MMP12|COL6A3|TIMP1|COL3A1|COL1A1|MMP7|COL5A1|CD44 
extracellular matrix
12 Regulation of hydrolase -1.753 COL6A3|CCL16|ALDH1A1|TIMP1|APOC3|CCL11| 
activity  HRG|SERPINA7|APOA1|APOA4|SERPINC1|
  SERPINA10|APOC2|EDNRA|ALDOB|KNG1|FETUB|
  AMBP|AHSG|CD44|APOA5
13 Small molecule catabolic -1.780 HPD|PAH|ALDH6A1|ALDH1A1|SULT2A1|GLS2| 
process  PIPOX|SHMT1|TAT|CDO1|SDS|CTH|SCARB1|
  SARDH|ALDOB|GLDC|ADH4|SLC27A2|CD44|
  QDPR|ENO2|HGD
14 Small molecule metabolic -2.197 PAH|ALDH6A1|EPHX1|SULT2A1|CYP3A5|FMOD| 
process  APOA1|APOA4|TTR|CDO1|BHMT2|SDS|DDC|
  CYP2C9|SCARB1|SRD5A2|PFKFB3|ADH4|SLC27A2|CYP3A7|BHMT|QDPR|HGD|HPD|ALDH1A1|
  UGT2B4|GLS2|PIPOX|SHMT1|TAT|CTH|SARDH|
  GNMT|ALDOB|GLDC|LDHB|APOF|CD44|CPS1|
  FBP1|ENO2|APOA5
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Although CD44 had a relatively low degree of 8 when com-
pared with the other potential hub genes, CD44 had the 
third highest closeness centrality and the second highest 
betweenness centrality, indicating its importance at re-
gional and global levels.[66] These regional and global levels 
of significance of CD44 in the HCC metastasis PPI network 
may be better understood through investigating its inter-
actions with other genes and pathways. First, its regional 

importance may lie in the facts that it plays a crucial role 
in regulating ECM remodeling, locomotion and migration 
related pathways. On the other hand, its global level of 
importance may be seen in its importance in connecting 
the metastasis-promoting influences of COL1A1 and ALD-
H1A1, both genes that lie in the periphery of the network, 
to the more central pathways associated with SERPINC1, 
respectively.

Figure S4. Boxplot of gene expression levels in counts per million (cpm) from GSE45114 of the hub genes and other mentioned genes.
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The FGG gene, which encodes the gamma chain of fibrin-
ogen, is a blood-borne glycoprotein that is uniquely ex-
pressed by liver tissues. Under physiologic conditions, the 
cleavage products of fibrinogen, including FGG, play im-
portant roles in regulating cell adhesion and spread, along 
roles in vasoconstriction and chemotactic activities.[67] FGG 
overexpression has been reported to be associated with 
increasing metastatic potential of HCC, whereby FGG over-
expression has been linked to HCC tumors exhibiting more 
advanced TNM stage and increased microvascular invasion, 
leading to overall higher recurrence rate and shorter OS time 
of patients.[68] The same study further demonstrated that 
FGG promotes the migration of SK-HEP-1 cell lines through 
regulation of Slug and ZEB1, leading to increased EMT.

The finding in this study, however, contradicted the notion 
that FGG overexpression’s association with more aggres-
sive phenotypes. As demonstrated in Figure 5c, FGG ap-
peared to be under-expressed in metastatic HCC from the 
microarray dataset GSE45114, and its lowered expression 
in GSE76427 samples to be associated with lower survival. 
GEPIA2 analysis of FGG, however, offered a slightly differ-
ent perspective. GEPIA2 survival analysis using the general 
and iCluster 2 datasets revealed that FGG under expression 
is associated with lower survival with significant log rank p 
value, while using the iCluster 3 dataset revealed that high 
expression of FGG to associate with lower survival instead, 
albeit with an insignificant log rank p value as seen in Fig-
ure S3. This could be indicative that the role of FGG in HCC 
metastasis is context dependent, whereby its upregulation 
drives metastasis in iCluster 3 HCC tumor types, while its 

downregulation in general and iCluster 2 HCC types drive 
metastasis instead.

FGG expression had been associated with numerous path-
ways in the present study, as shown in Table S5. Most no-
ticeably, FGG shared its involvement in the wound heal-
ing pathways with SERPINC1, at the same time, shared its 
involvement in the ECM-related pathways with CD44. As 
tempting as it would be to associate FGG as the gateway 
between the two pathways, STRING analysis revealed that 
FGG only interacted with SERPINC1, but not CD44. Further-
more, FGG also shared with SERPINC1, interactions with 
AMBP, TTR, and PAH, which further demonstrates the likeli-
hood of AMBP-, TTR-, and PAH- related mechanisms.

In the context of network importance, FGG ranked 4th for 
degree with 14 edges, but did not have superior closeness 
and betweenness centrality values when compared to the 
other hub genes. This is indicative that FGG is only import-
ant in the local context, and not in the regional and global 
context of the PPI network.[66] Regardless of which, FGG may 
still have potential to qualify as a potential biomarker and 
therapeutic target in advanced HCC. Further research is war-
ranted to unveil the role of FGG in impeding or driving HCC 
metastasis, in more detailed contexts such as HCC subtypes.

Apolipoprotein A5 or APOA5 is a component of high-den-
sity lipoprotein and is essential in the regulation of plasma 
levels of triglycerides. It is found in high density lipoproteins 
and its dysregulation have been associated with hypertri-
glyceridemia and hyperlipoproteinemia.[69] Lipoproteins 
have also been demonstrated to have a role in the progres-
sion of cancers. Namely, APOA1 has been demonstrated by 

Table S5. Pathways involving FGG are extracted from the node table from the enrichment map network. Corresponding NES are also 
depicted. Other genes that are present in the PPI network and are involved in the particular pathways are also depicted, whereby the hub 
genes are also bolded.

Pathways NES Genes

1 Identical protein binding -1.753 NCAM1|IAPP|COL1A1|SHMT1|APOA1|FGG|APOA4|
  TTR|TAT|SDS|SERPINC1|CTH|SCARB1|GNMT|APOC2|ALDOB|GLDC|AMBP|LDHB|CD28|FBP1|QDPR|HGD
2 Extracellular matrix 2.733 COL6A3|COL3A1|COL1A1|MGP|COL5A1|FGG 
structural constituent  
3 Extracellular matrix 2.720 COL6A3|TIMP1|COL3A1|NCAM1|SPARC|COL1A1| 
organization  MMP7|FMOD|FGG|TTR|MMP12|COL5A1|CD44
4 Biological adhesion 1.675 COL6A3|COL3A1|NCAM1|CCL11|FGG|APOA4|SPN|ACE2|SCARB1|POSTN|PTK7|AMBP|COL5A1|CD44|
  CX3CR1
5 Integrin cell surface 1.734 COL6A3|COL3A1|COL1A1|COL5A1|FGG|CD44 
interactions 
6 Wound healing 1.743 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|FGG|F13B|
  SERPINC1|MMP12|SCARB1|SERPINA10|KNG1|PTK7|
  COL5A1|CD44
7 Response to wounding 1.588 F9|TIMP1|COL3A1|SPARC|COL1A1|HRG|APOA1|
  FGG|F13B|SERPINC1|MMP12|SCARB1|SERPINA10|
  KNG1|PTK7|COL5A1|CD44|CX3CR1
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Ren et al.[70] to potentially downregulate mitogen-activat-
ed protein kinase (MAPK) pathway, leading to subsequent 
cell cycle arrest promoting apoptosis and inhibiting HCC 
proliferation, while APOA2 and APOA4 have shown prom-
ise as biomarkers, due to their downregulation in HCC.[71] 
APOA5, on the other hand, has not been reported in HCC 
development. Such findings were relatively consistent with 
the findings in the present study, whereby all APOAs were 
found to be downregulated, as demonstrated in Fig. 5d. 
However, the previously reported MAPK involvement did 
not appear significant in the present study. Therefore, the 
role of APOA1 was unclear in this study.

Another study has demonstrated that APOA5 expression 
in hepatocytes can be reduced following treatment with 
inflammatory signals, TNF-α and IL-1.[72] The study further 
demonstrated that the promoter sequence of APOA5 con-
tains PPARα response element, which on signaling insti-
gated by TNFα, leads to the downregulation of the APOA5 
gene expression. This is indicative that APOA5 expression 
can be regulated through inflammation, which also plays 
crucial processes in cancer progression.

In the STRING network constructed, it was also revealed that 
APOA5 may interact with HPR and APOF as well. These two 
genes also had correlation with OS of patients with HCC as 
shown in Figure 5d. HPR has also shown promise as a prog-
nostic marker in HCC, whereby its higher expression of HPR 
was correlated with better differentiation of HCC cells and 
subsequent better OS in patients.[73] Such was consistent 
with the present study, as HPR expression did appear to 
correlate with patient survival as well, as indicated in Figure 
5d. Besides such, HPR have yet been associated with poten-
tial HCC metastasis-driving pathways in existing literature, 

nor in the present study. Meanwhile, APOF has also been 
investigated and showed promise to be a predictor for HCC 
progression.[74,75] The same study further demonstrated 
that APOF may have tumor suppressive functions, whereby 
SMMC-7721 and Huh-7 cell lines displayed lowered prolif-
erative abilities following APOF upregulation, and in vivo 
analysis revealed tumor growth inhibition.

In the context of network centrality, APOA5 did not have 
superior degree, closeness centrality, and betweenness 
centrality values when compared against other hub genes, 
indicating its relatively lowered importance for the infor-
mation flow in the HCC metastasis PPI network.[66] But once 
again, by virtue of having degree values in the upper 10% 
of the network and of having significant correlation with 
survival of HCC patients, APOA5 may be a crucial hub gene 
linking other genes and pathways, hence, may subsequent-
ly impede metastasis in HCC (Table S6). Although with less 
weight of importance compared with the three other hub 
genes, APOA5 therefore may still be a potential biomarker 
or therapeutic target in advanced stages of HCC.

Figure 6 encapsulates all of the pathways and its mediators, 
in which the hub genes may drive or impede metastasis. 
The figure contains all of the mechanisms that were sug-
gested by the results of the present study and had been 
proven by prior studies in regards to their relevance with 
cancer metastasis.

Conclusion
The present study provided a comprehensive bioinformat-
ics analysis to identify potential predictive biomarkers for 
advanced HCC. Four identified candidate therapeutic tar-
gets, namely, SERPINC1, CD44, FGG, and APOA5 were found 

Table S6. Pathways involving APOA5 are extracted from the node table from the enrichment map network. Corresponding NES are also 
depicted. Other genes that are present in the PPI network and are involved in the particular pathways are also depicted, whereby the hub 
genes are also bolded. 

Pathways NES Genes

1 Cholesterol binding -1.695 APOC3|APOF|APOA1|APOA4|APOA5
2 Regulation of fatty -1.645 APOC2|APOC3|APOA1|APOA4|APOA5 
acid biosynthetic process 
3 Regulation of hydrolase -1.753 COL6A3|CCL16|ALDH1A1|TIMP1|APOC3|CCL11|HRG| 
activity  SERPINA7|APOA1|APOA4|SERPINC1|SERPINA10|APOC2|
  EDNRA|ALDOB|KNG1|FETUB|AMBP|AHSG|CD44|APOA5
4 Cellular lipid metabolic -1.841 ALDH1A1|EPHX1|CYP3A5|APOC3|APOA1|APOA4|TTR| 
process  CYP2C9|APOC2|ADH4|SLC27A2|CYP3A7|CPS1|APOA5
5 Small molecule -2.237 PAH|GLS2|SHMT1|APOA1|APOA4|CDO1|BHMT2|SDS| 
biosynthetic process  CYP2C9|CTH|SRD5A2|ALDOB|SLC27A2|BHMT|CPS1|FBP1|QDPR|ENO2|APOA5
6 Small molecule -2.197 PAH|ALDH6A1|EPHX1|SULT2A1|CYP3A5|FMOD|APOA1|APOA4|TTR|CDO1|BHMT2|SDS|DDC|CYP2C9| 
metabolic process  SCARB1|SRD5A2|PFKFB3|ADH4|SLC27A2|CYP3A7|BHMT|QDPR|HGD|HPD|ALDH1A1|UGT2B4|GLS2|
  PIPOX|SHMT1|TAT|CTH|SARDH|GNMT|ALDOB|GLDC|LDHB|APOF|CD44|
  CPS1|FBP1|ENO2|APOA5
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significantly associated with the OS rate of HCC patients 
and may exert critical function in HCC progression. Enrich-
ment denotes the possible mechanisms such as prolifer-
ation, survival signals, and EMT play essential roles in the 
development and progress of HCC. These findings offered 
novel insights into the current understanding of the path-
ways and interactions using PPI networks and suggests 
that these findings may have great clinical significance.
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